3 research outputs found

    Non-d0d^0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3_3

    Full text link
    Using first-principles density functional theory we predict a ferroelectric ground state -- driven by off-centering of the magnetic Mn4+^{4+} ion -- in perovskite-structure BaMnO3_3. Our finding is surprising, since the competition between energy-lowering covalent bond formation, and energy-raising Coulombic repulsions usually only favors off-centering on the perovskite BB-site for non-magnetic d0d^0 ions. We explain this tendency for ferroelectric off-centering by analyzing the changes in electronic structure between the centrosymmetric and polar states, and by calculating the Born effective charges; we find anomalously large values for Mn and O consistent with our calculated polarization of 12.8 μ\muC/cm2^2. Finally, we suggest possible routes by which the perovskite phase may be stabilized over the usual hexagonal phase, to enable a practical realization of a single-phase multiferroic.Comment: 6 pages, 3 figure
    corecore